Adapting Weighted Aggregation for Multiobjective Evolution Strategies
نویسندگان
چکیده
The conventional weighted aggregation method is extended to realize multi-objective optimization. The basic idea is that systematically changing the weights during evolution will lead the population to the Pareto front. Two possible methods are investigated. One method is to assign a uniformly distributed random weight to each individual in the population in each generation. The other method is to change the weight periodically with the process of the evolution. We found in both cases that the population is able to approach the Pareto front, although it will not keep all the found Pareto solutions in the population. Therefore, an archive of non-dominated solutions is maintained. Case studies are carried out on some of the test functions used in [1] and [2]. Simulation results show that the proposed approaches are simple and effective.
منابع مشابه
Effectiveness of Weighted Aggregation of Objectives for Evolutionary Multiobjective Optimization: Methods, Analysis and Applications
Multiobjective optimization using the conventional weighted aggregation of the objectives method is known to have several drawbacks. In this paper, multiobjective optimization using the weighted aggregation method is approached with the help of evolutionary algorithms. It is shown through a number of test functions that a Pareto front can be achieved from one single run of evolutionary optimiza...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملAn Evolution Strategy for Multiobjective Optimization
Almost all approaches to multiobjective optimization are based on Genetic Algorithms, and implementations based on Evolution Strategies (ESs) are very rare. In this paper, a new approach to multiobjective optimization, based on ESs, is presented. The comparisons with other algorithms indicate a good performance of the Multiobjective Elitist
متن کاملXergy analysis and multiobjective optimization of a biomass gasification-based multigeneration system
Biomass gasification is the process of converting biomass into a combustible gas suitable for use in boilers, engines, and turbines to produce combined cooling, heat, and power. This paper presents a detailed model of a biomass gasification system and designs a multigeneration energy system that uses the biomass gasification process for generating combined cooling, heat, and electricity. Energy...
متن کاملPower harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems
Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...
متن کامل